Introduction To Plasma Physics
Synopsis

This book grew out of lecture notes for an undergraduate course in plasma physics that has been offered for a number of years at UCLA. With the current increase in interest in controlled fusion and the widespread use of plasma physics in space research and relativistic astrophysics, it makes sense for the study of plasmas to become a part of an undergraduate student’s basic experience, along with subjects like thermodynamics or quantum mechanics. Although the primary purpose of this book was to fulfill a need for a text that seniors or juniors can really understand, I hope it can also serve as a painless way for scientists in other fields—solid state or laser physics, for instance—to become acquainted with plasmas. Two guiding principles were followed: Do not leave algebraic steps as an exercise for the reader, and do not let the algebra obscure the physics. The extent to which these opposing aims could be met is largely due to the treatment of a plasma as two interpenetrating fluids. The two-fluid picture is both easier to understand and more accurate than the single-fluid approach, at least for low-density plasma phenomena.

Book Information

Hardcover: 330 pages
Publisher: Springer; 1st edition (December 31, 1995)
Language: English
ISBN-10: 0306307553
Product Dimensions: 9.3 x 7.3 x 1 inches
Shipping Weight: 2 pounds
Average Customer Review: 5.0 out of 5 stars See all reviews (2 customer reviews)

Customer Reviews

Having used, read more than a dozen plasma physics monographs, and used at least two for a Ph.D. level plasma physics course (including 'Introduction to Plasma Physics' by D.R. Nicholson) I can safely say that Chen’s is the best for the introductory or self-study student. I have also recommended it to those intent on working plasma problems on their own, such as questioners who’ve frequented the astrophysics forum on allexperts.com. As I’ve told several of them, Chen's
book essentially "leads you by the hand"- going through particle motions, gyro-frequencies, adiabatic invariants etc., to magnetic mirror systems (including loss cone angles and Fermi accelerations applied to them) to plasma instabilities and MHD, whereas many others (even 'Plasma Physics' by Krall and Trivelpiece) tend to assume too much. If there is one small complaint it's that Chen, certainly in his earlier editions, tends to use the cgs system as opposed to the S.I. (For example, using ergs instead of joules, and cm/s instead of m/s etc.). But this is easily remedied if the student simply downloads the 'Plasma Formulary' (google!) which contains a Table for conversions between the systems. It is certainly not enough of a problem to warrant notching the rating down! Chen's best section (in Chapter Seven) is probably that which shows how MHD (magnetohydrodynamics) actually arises from a progressive degradation in physical detail, starting from two-fluid theory, to one fluid theory to MHD. Chen's bottom line overview is that one proceeds by taking moments of the Boltzmann equation. E.g. given the Boltzmann eqn. is: \[@f/ @t + v^*\text{grad } f + F/m^2@f/ @t = (@f/ @t)_C \]

where @ denotes partial derivative, and \((@f/ @t)_C\) is the time rate of change in \(f\) due to collisions.

Download to continue reading...
